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Useful approaches to the calculation of symmetry coupling coefficients (FiylF2721FTb) are 
reviewed. Since a common phase factor always remains undetermined for each trio of F1, F2, and F, a 
unique standardization of phase is proposed by the requirement, in Racah's lemma, 

(jlFlal,j2F2a21jFab)>O and real. 
In conjunction with the basis relations and the phase convention for Wigner coefficients, a novel 
method is suggested for the calculation of symmetry coupling coefficients in the group G from those in 
the subgroup G C SU(2) or R 3. The results apply in full generality to any point group G, single or double 
group. 
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1. Introduction 

The coupling of two ket vectors [jlml) and [ j 2 m 2 3  transforming, respectively, 
as the irreducible representations D 3~ and D 32 of the special unitary group SU(2) 
or the three-dimensional rotation group R3 may be easily accomplished by the 
well-known relation 

[jm)= ~ [jtml)[j2m2)(jlmljzmz~m). (1) 
ftll ~m2 

Here, the resulting ket vector [jm) transforms as a member of the sum in the direct 
product 3, + 32 

D 3~ x D ~ =  ~ D 3 . (2) 
3 = IJ1-321 

The coupling coefficients (jimLjEm2[jm) for the group SU(2) or R 3 appearing in 
Eq. (1) are usually called Wigner coefficients. These quantities are easily evaluated 
following standard procedures [1-3] and their general phase factor is fixed by the 
requirement [4] 

(Jdd2J-Ji[/J) > 0 and real (3) 

which is equivalent to the original phase convention due to Wigner [3] 1 

(J~J~J2 -J2[J,J~ -J23  > 0 and real (4) 

i The customary phase convention of Condon and Shortley [5] 

(,JlJlJ2J2[Ja +J2,Jl +J2) = + 1 

(jlJ2jm[jl~[jlj2,j- l ,m) > 0 and real 

is implicitly included in Eq. (3). 
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If a finite subgroup G of SU(2) or R 3 is considered, G C SU(2), R3, basis func- 
tions II1 71) and IF2 72) which transform, respectively, as the irreducible represen- 
tations Ft and F2 of G may be coupled to yield another function ]FTb) where the 
irreducible representation F occurs in the direct product 

i 

The coupling relation may then be written 

IF7b)= ~ IF17t)iF272)(F171Fz72[FTb) (6) 
];1,72 

where the quantities (F1 71 F2 72 I/"Tb) are called symmetry coupling coefficients. 
The additional label b is introduced whenever the reduction according to Eq. (5) 
produces the irreducible representation F more than once. Similar to the Wigner 
coefficients, the numerical calculation leaves a general phase factor undetermined. 
In particular, the phase convention chosen for the Wigner coefficients, via Eq. (3) 
or Eq. (4), does not automatically fix the additional phase factors within G C SU(2), 
R3. 

Symmetry coupling coefficients have been calculated on the basis of group 
theoretical methods by various authors [-6-12-1. Phases were fixed arbitrarily and, 
consequently, there are almost as many phase conventions as authors, although 
the convention actually employed has rarely been explicitly stated. Some of the 
phase conventions suggested or in use have been applied to special cases only 
[6, 8, 1 l] or have limited utility for other reasons. In addition, the recent proposal 
of so called phase-fixed 3-F symbols [12] implies the erroneous notion of a defini- 
tion of phase based on physical principles. 

It is obvious that a standardization of the general phase factor is not a neces- 
sary requirement and has, in particular, no consequence for the physical properties 
of the systems under consideration. Nonetheless, a definite standardization of 
phase is of certain convenience since actual computations are facilitated and the 
results of various authors may be related. The resulting advantage is demonstrated 
perhaps best by the general acceptance of the phase convention due to Condon 
and Shortley for the group R 3. 

In point groups, a situation similar to that in the group R 3 has not been achiev- 
ed so far. Therefore, in this paper, we investigate the available methods for the 
determination of the coupling coefficients (F1 71 F2 721F7 b) in an arbitrary group 
G and the necessary conditions for the standardization of phase. This is accom- 
plished by first studying the transformation behaviour of the basis functions ]jm) 
within a subgroup GCSU(2), R 3. The new basis functions [jFTa) thus formed 
belong to certain irreducible representations F of G C SU(2), R 3 and the label a is 
similar to b above except that it refers to the reduction D s = ~ ai Fi. If two of these 

i 
functions are coupled as in Eq. (6), a new coupling coefficient (,jlF17~ax, 
jzF272a2]jFTa) is defined. On the basis of Racah's lemma, this coefficient is 
related to the quantity (F  1 71/'2 721FTb) defined above. The lemma may then be 
employed for a unique standardization of phase of the coupling coefficients 
(/ '1 71/"2 72 [ F7 b). Subsequently, the coefficients (FI 7~/"2 72 ]/"7 b) may be calculat- 
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ed using the lemma from the related coefficients (Jx F1 71 al, J2/"2 72 a2 [J/'7 a) within 
the group G C SU(2), R3. In this procedure, the basis relations and the phase con- 
vention for the Wigner coefficients are employed, in addition. To demonstrate the 
usefulness of the present method, the resulting coupling coefficients for the groups 
D 3 and D* are presented. 

2. The Calculation of Symmetry Coupling Coefficients 

The symmetry coupling coefficients defined in Eq. (6) conform to the orthogon- 
ality relations 

Y~ (VTblr~xGT~)(r ,?~G~lC'~ 'b ' ) :6 (r , r ' )6 (~ ,~ ' )~(b ,b ' ) ,  (7) 

Y, <r,~xr2~2[r~b><rTblI'l~'~r2/2>=a(~,~',)a(~2,~i). (8) 
F,y,b 

Multiplication of Eq. (6) by (FTblF171F272) and summation over F, 7, and b 
produces the inverse relation 

IF17~)IG72) = Z I & b ) ( r T b l r ~ 7 ~ & 7 ~ ) .  (9) 
F,7,b 

The number of linearly independent product functions ] F7 b) is determined by 

_l E nr = Zr,(R) )ir2(R))Ir(R)* (10) 
g R 

where 9 is the order of the group and the summation extends over the operators R 
of the group. 

The products of the basis functions 1/171) and 1F272) in Eq. (6) transform 
under an operation R of the group according to the direct product matrix 

o(n )  = r l  (R ) x G(R) . (11) 

On the other hand, the coupled functions I F? b) transform according to the matrix 
F(R) which is in block diagonal form, consisting of the matrices Fi(R),of Eq. (5) 
along its main diagonal. The representation matrices are related by 

r(R) = u + D(R) U. (12) 

The symmetry coupling coefficients are now the elements of the unitary transfor- 
mation matrix U, i.e. 

(rTbr r ,  7, r2 72) = (r~ 71r2 721rTb)*. (13) 

In matrix component form, Eq. (12) may be written as 

F, ( rT b I r ,  y, G 7~) Dr',~I(R)Dr~/=(R)(F, 7'~ F2 711V'?'b') 
~1,'~2 

• i,~i r , , (14) 
= D , , , ( R ) a ( r , F  )6(b,b ). 
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Multiplication by ( F  17~F2 7~ IF7 b) and summation over F, 7, and b gives a set of 
homogeneous linear equations 

D r~ Dr~ , , ,,,i(R) ~(R)(r171r27zlrT'b) = Z (F~ylF272[FTb)Dr,'(R) (15) 

which may be employed to the actual calculation of the coupling coefficients 
(FIYlF272[FTb). This is the method used previously [9, 10, 13]. However, a 
simple relationship obtains only if the label b is not required, i.e. if nr = 1. If, on 
the other hand, n r >  t, the situation is more complex [13]. It should be noted 
that, for each arrangement of the symbols F1, F2, and F, and each b, an arbitrary 
phase factor remains undetermined. 

Another approach is provided by the projection operator technique. A pro- 
jection operator P~ ~ operates on the basis function IF"'/") according to 

p r i r,,7,, ) = Icy ')  6(F, C")8(7, 7") (t6) 

to give the same function, a partner function or zero. Considering the case where 
the representation F is contained only once in the direct product/"1 x F2 one may 
write 

dr 
( /TIRI  FT)*R (17) 

where dr is the dimension of representation F and g is the order of the group. 
Operating with p r on the product function IF171)1F2 72) of Eq. (9) generates a 
function belonging to the 7'-th row of irreducible representation F 

P[,~ I r l  71) [/'2 72) = IVT') (F71 V, 7, r272) • (18) 

In the general case, the reducible product representation may contain F more 
than once, i.e. nr > 1, and, therefore, a linear combination is obtained 

P~,, IF17,> I v2 72> = S I VT' b> <VTb I V~ 7~ r2 72>. (19) 
b 

The operators R of the group transform the basis functions IF17,) and IF272) 
according to 

R [F 171 ) = ~ IF17]) (Cl 7] I R [r171) (20) 

where (F17~ I RIF~ 71) are matrix elements of irreducible representation F1. In- 
troducing Eq. (17) and Eq. (20) into Eq. (19) produces 

d~ 2 [C~Ti)lr271> ~ <C,~ilRIF,7,> 2b IFT'b}(FTblF171Fzh)  = g - , A  ,~ 

(21) 
.(F2y'21RIF272) (FT'IRlFT)*.  

Application of Eq. (6) to [Fy' b) gives therefrom an expression for the symmetry 
coupling coefficients 

dr E D rz (R~D r (R~* (22) ~(F17'1Fz?zlFT'b)(FTblF17aFz72) = '  Dri~l(R) ~>;2,--, 7'~',--, " 
b g n 
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If nr = 1, the sum over b disappears and provided one lets 7[, 7;~, and 7' assume all 
possible values while keeping 71, 72, and 7 fixed, all the coupling coefficients are 
obtained with the proper phase relations. A common phase factor is still, of 
course, arbitrary. 

In the general case, the known sum over group representations on the right 
hand side of Eq. (22) depends rather on a combination of nr of these coefficients. 
Nonetheless, there is no serious problem of how to obtain the coupling coefficients. 
Thus one may operate with P[~ on nr different product functions I/i 71>[F272> 
according to Eq. (19) and Eq. (21). In this way, nr different functions IFT'b> are 
obtained, all  of them transforming according to representation F. Although, in 
general, these functions are not orthogonal, an orthogonal set of n r linearly in- 
dependent functions may be obtained by any one of the usual orthogonalization 
procedures. If these functions are introduced into Eq. (19), the summation dis- 
appears and the required nr coupling coefficients are produced in turn. In this 
case, considerable arbitrariness in the choice of the functions I FT' b> remains and, 
therefore, the label b represents a running index only. 

A more desirable procedure is to generate a set of functions IF? b> which are 
eigenfunctions of some operator such that every value of b corresponds to a dif- 
ferent eigenvalue. Often, the angular momentum operator j is employed in this 
way [7, 11]. Then, Eq. (22) is still applicable, although 

Dr,,(R) = < FT'j I R I FTj ) . (23) 

Alternatively, it is often possible to differentiate functions IF7 b> equal in F 
and 7 by their transformation behaviour in a higher group. This was proposed, 
in fact, above with respect to S U (2), R 3. The same procedure as regards point 
groups is considered in detail by Hollebone et al. [14] and requires the subduction 
of a component of a representation of the higher group onto an irreducible com- 
ponent 7 of the subgroup representation F. 

The numerical values of the symmetry coupling coefficients of Eq. (6) and Eq. 
(9) are thus uniquely determined by the methods outlined above. However, for 
each possible arrangement of the three F symbols within the coefficient (e.g. F 1, 
F2, and F, in that order) and for every value of the index b, a common phase factor 
remains undetermined. 

3. The Determination of Symmetry Functions 

Starting from the angular momentum eigenfunctions Ijm>, basis functions of 
the irreducible representation F within the subgroup G C S U (2), R 3 may be obtain- 
ed according to 

Ij F7 a> = ~, Ijm> <jm [j F 7 a> (24) 
m 

where 7 is the row index of F. It is convenient to take 

<00[0Ala~> = 1 (25) 

for any group G, where A 1 denotes the totally symmetric representation of G [15]. 
The index a is required whenever representation F occurs more than once in the 
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decomposition of D j. In fact, the frequency nr of F is determined by 

2 2 nr = Zr(R)* )~j(R) (26) 
g g 

Equation (24) determines a unitary transformation and, therefore, the orthogonal- 
ity relations of the expansion coefficients (jm [jF? a) as follows 

(j FTa [jm) (jm [j F7 a) = 6(F,F')6(?,V')6(a, a') 
m 

(27) 
(jmlj FTa) (j' FTa [j' m') = 6(j,j')b(m,m') . 

F,?,a 

The determination of the coefficients (jmljFTa) may be based on Eq. (16). If 
the projection operator Eq. (17) is applied to the basis functions of Eq. (24), the 
necessary and sufficient condition for the functions [jF?a) obtains as 

r . , ,  d r  v r , . . . . .  ]jF~a) D,r(R) RIjF y a)b(F,F)f(7,y). =P,vlJF T a ) =  ~ (28) 
g R 

The basis functions characterized by component 7" obtain accordingly 

- -  F , • t t r t  t IjFT"a)=p~r,~ljV'?'a)= dr ~D~,,~(R) RIjF 7 a)cS(C,, )3(?,y). (29) 
9 R 

Although the relative phases between the basis functions [jFya) and ]jFy"a ) 
have thus been fixed by Eq. (29), a common phase factor for each combination of 
j, iv, and a still remains undetermined. 

It should be observed that the condition Eq. (28) is equally well followed by a 
linear combination of the functions IjF?a) having a different index a. In the 
actual calculation, it is practical to use the most simple one of the functions Eq. 
(24). This function is formed if one operates with pry on ]jm), thus 

Pr~Ljm ) = dr ~ (F?IRIF?)*RIjm) = l j r ? a ) .  (30) 
g R 

Here, the label a is simply a running index. Functions ]jFTa) having a different 
value a must conform to the orthogonality condition 

(j, r7a, L r r P~,'P,~ [jF~ a) = 3(],j')6(a, a'). (3 l) 

Alternatively, the characterizing index a in the functions IjFTa) may be 
associated with the different eigenvalues of an operator or a set of operators. 
Another possibility is to apply p r of Eq. (17) to the basis functions IjF'7'a') of 
the irreducible representation F' of a higher point group. Provided the reduction 
of F' yields a single irreducible representation F of the subgroup, index a may be 
substituted by the representation U [ 15]. 

To derive an expression for the coefficients (3"mljF?a) we expand the func- 
tions ]jFT"a ) in Eq. (29) according to Eq. (24) and obtain thus 

2[jm')Q'm'[jrT"a)= dr ~Dr,,r(R)*2Rljm)(,jmljr'y'a)b(F,F')6(7,7') (32) 
m' g R m 
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Multiplication by (j  rn" [, followed by multiplication (j' F' 7'a ]j' m') and summation 
over F', y', and a produces 

Y, (jm"ljFy" a) (j'F'7' a[j' m') = dr z Dr,,~(R)* ~ D~,,,.(R) 
r',r',a g R m 

(33) 
Y, (.jmljF'7' a) (j'F'7' aIj'm')c~(F,F')6(7,7'). 

F',y',a 

Employing the orthogonality relations Eq. (27) and changing double primes into 
primes finally gives [15] 

Y~ (jm' I j r / a >  4,j F 7 a [J m) = d r  Z Dr',(R) * Dim're(R) " (34) 
a g R 

This equation may be used to directly evaluate the coefficients (.j m [j F 7 a),  again, 
up to a common phase factor. 

4. Symmetry Coupling Coefficients within the {j, F} Scheme 

Since the coefficients (]rn IjFTa) are the elements of a unitary matrix, multi- 
plication of Eq. (24) by (,jFTa[jm) and summation over F, ?, and a yields the in- 
verse equation 

[jm) = ~ [jFTa) (.]FTaljrn). (35) 
F,y,a 

Replacing, in Eq. (1), [jm), [Jl ml),  and Ijzm2) according to Eq. (35), one obtains 

[jFya) (jFya[jm) = ~ ~ ]JtFiTlal)]j2Ez72a2) 
Fg~,a Fl,'21,al ml,m2 

r2,~2,.2 (36) 
• ~1 mlJ2 m2 Ijm) (Jl Fx 71 al IJx ml)  (./2/'2 72 a2 [J2 rn2). 

Therefrom, multiplication by ~ F '  7' a' Ijm)* and summation over m produces an 
expression for the basis functions [jFya) transforming according to irreducible 
representation F of the subgroup G C SU(2), R3. 

IjFya)= ~ ]jlF171a1)lJ2F272a2).QiFlyla1,j2-F272a21JFya). 
Fl ,y l , a l  (37) 
ff2,Y2,a2 

In Eq. (37), the coupling coefficient within the {j,F} scheme is defined as 

(.JlF171al,j2F272azljFTa) = ~ (.jlmlj2m2[j rn) 
.,,,.,,m2 (38) 

• ~'Jl/'1 71 6/1 l J1 ml )  (J2 F2 72 a2 [J2 m2) (.]1"7 a Ijm)* 

This coefficient 2 may not necessarily always be obtained in real form, even if 
suitable phases for the basis functions of Eq. (24) are selected. 

z The coefficient defined in Eq. (38) relates the matrix element of a tensor operator in a subgroup 
G to the corresponding reduced matrix element in S U (2) or R3 as follows [ 16] 

(Jl Fi ~1 all T~ 2r2az [J3/"3 73 a 3 )  = ( - -  1)2J2Q'l Fx Yl al I J31"3 Y3 a3,j2 Fz 72 a2)- (Ja I[ T& I J3). 
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The Wigner coefficients of Eq. (1) likewise define a unitary matrix and, there- 
fore, the inverse relation readily obtains as 

IJl mi)[Jam2) = E IJ m) (-jmlJimiJ2m2) (39) 
j,m 

Replacing all three kets in this expression according to Eq. (35) gives an equation 
which is the inverse of Eq. (36) 

2 [Jl Fi 71 a l )  l J2/'2 72 a2) (-Jx F1 yl at IJi rnl) (3"2 I"2 72 612 f J2 rrl2) 
Fl,yl ,al  
F2,Y2,a2 

~ Ijr~/a) ( jFTaljm) (jm[jimlj2m2).  
F,y,a j,m 

(40) 

Multiplication by ~Jl m l [Jl F[ 71 a~) and by ~2 m2 ]J2 [2 72 a~) and summation 
over m~ and m2 produces 

~_, [jlF171al)lj2F272a2) 2 4,jlmlljlri?[a'l) 
Fl,~l,al /hi ,m2 
ff2,)~2,d2 

• (3"1/"1 71 al [Jl ml)  (-J2m2 Ij2F'27f2a'2) (j2 F2 72 a2 [j2m2) 
(41) 

= Y. IjF7a) Q'tmllJlF[7'la'l) ~j2m2[J2U27'za'2) 
F,~,a 
ml,m2 

" ~ (jFTaljm),(3"mljimlJ2m2) • 
j,m 

Employing the orthogonality relation Eq. (27) and introducing the coefficients 
defined in Eq. (38) gives an equation which is the inverse of Eq. (37) 

lJiF171al)lJ2F272a2) = ~, IjF7a) (.jFTalJiF17iai,j2F272a2). (42) 
j,F,~,a 

On the basis of the orthogonality of their basis functions, the coefficients of Eq. 
(37) and Eq. (42) form a unitary matrix. The corresponding orthogonality relations 
are as follows 

(,jFTa[jl Fi Ti ai,j2 F2 72a2) Q'i F17i aa,j2 F2 72a2[j'F' y' a') 
fl,~l,al 
ff2,Y2,a2 

= 6 (j,j') 6(/', U) 6(7, 7') 6 (a, a') (43) 

{jx Fi 7t ai,j2F272a21jFy a) (.j FTa[jl F~ y~ a'l,j2F'27'2a'2) 
j,F,7,a 

= ~(F171a1,F'iT'ia'l)O(F272az,F'2y'2a'2). 

5. Relations between Coupling Coefficients 
and the Standardization of Phase 

It has been shown in Section 2 that the numerical values of the symmetry 
coupling coefficients (F1 71F272]FTb) are determined by the transformation 
properties of the basis functions, cf. Eq. (22). Consequently, a change of basis 
function will imply at least a change of phase. It has likewise been shown that a 
common phase factor still remains undetermined• 
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Similar results were derived above for symmetry coupling coefficients of the 
basis functions [j1"Ta) within the {i,1"} scheme. Although the phase convention 
[viz. Eq. (3)] for the Wigner coefficients (Jl miJ2 m2 ]jm) is included in the defini- 
tion of Eq. (38), an arbitrary phase factor still arises for each set of values j, F, and 
a. It is alone the phases between components 7 of irreducible representation 1" 
which have been fixed. 

The various phase factors encountered above may be related on the basis of 
a lemma by Racah [17]. The irreducible representations of a given group SU(2) 
or R3, say, are in general reducible as representations of a subgroup G C SU(2), 
R3. Racah's lemma shows that the coupling coefficients for the irreducible repre- 
sentations of SU(2), R3 in block diagonal form (with respect to G) are proportional 
to the coupling coefficients for the corresponding irreducible representations of G 

( jaFiTla1, j2FzTza2[ jFTa)= ~ (ri~x1"z721FTb>q, rlal,jzF2azljFab). (44) 
b 

Here, the new coefficient in parentheses 3 is independent of the components 7 and, 
due to the orthogonality of the two coupling coefficients, it conforms to the ortho- 
gonality relations 

(Jl Fi a l,j21"2 a2 Ij Fa b)( jra b' [Jl Fi a'a ,J2 F~ a~) 
j,a 

=  (r11"2 
(45) 

(j1" ab l J11"1 al,j2 F2 a2)(ji 1"1 al,jz F2 a2 Ij' r a' b) 
Fl,al 

F2,a2,b 

= c5 (Ja J2J) (5 (J,J') ~ (a, a'). 

In Eq. (45), 6(1"~1"21"*) is one or zero, depending on whether or not the direct 
product 1"i x / '2  x 1"* contains the unit representation and 6(jaj2j) is the triangular 
delta 4. If Eq. (44) is multiplied by 

(j~ Fl ~la~,j'2 F272a'2 Ij'UT' a'}* 

= 2 (1"i 7i 1"2 721F' 7' b ')* (j'~ F i a],j~ F 2 a~ [j' 1"' a' b')* (46) 
b' 

summation over 71 and 72 and application of the orthogonality relation Eq. (7) 
gives 

(-J'~ 1"i 7i a] ,j~ 1"2 72 a~ [j' F' 7' a ')* (,Ji F171 ai ,J2 1"2 72 a2 [J1"7 a) 
~1,~2 (47) 

= ~ 6(1",U)6(%~')b(b,b')(]'l 1"1 a'l,j'21"2 a'2 Ij 'Fa'b')*. (h 1"1 al,J21"2 a2 Ij1"ab). 
b,b' 

3 The argument b in the coefficient of Eq. (44) is placed following the usage of Racah [17]. This 
should be noticed, in particular, if sums are considered, viz. Eq. (45). The coefficient relates the reduced 
matrix element of a tensor operator in a subgroup G and the corresponding reduced matrix element in 

. SU(2) or  R 3 according to [16] 

(jlFi l[ TJ~r~llJ3F3}b~ =(--1)2J2(]lFlalb1 Ij31"3az,j2ff za2) " (Jl]l TJ2 I]J3) • 

4 It is6 (JiJ2J) = 1 if l Jl -Jzl <J --<Jl +J2 and zero otherwise. 
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This equation enables, in principle, the calculation of the coefficients (]1Flal, 
jzFza2ljFab). If several different indices b arise, however, no simple relation 
obtains. 

So far, the quantity b in ]F7b) has been used as a differentiating index which 
assumes altogether nr values and which is dependent on/'1, F2, and F, viz. Eq. (9). 
To define simple conditions, we let now the index b correspond to eigenvalues of 
the angular momentum operator js. In this case, hjFya) and [Fyb) are simply 
related, since ]iF? a) is eigenfunction ofj  to the same eigenvalue to which b corre- 
sponds. Only a single set of coefficients (F171/'2 72 ] F? b) is indeed required and, 
therefore, one defines the so-called basis relations. These basis relations are 
equivalent to the selection of a particularly simple set of nr basis functions [jFy a). 
As a consequence of the correspondence between b and j, the sums over b and b, b' 
in Eq. (44) and Eq. (47), respectively, disappear. It is evident that the coefficients 
(Jr F1 al,j2F2 a2 ]jFab) may now be calculated on the basis of Eq. (47) and again 
an arbitrary phase factor arises for each set of values of/'1, F2, F, and j. 

In addition, a standardization of the general phase factor may be easily achiev- 
ed if a simple convention is introduced. To this end, we always assume, in what 
follows, that the correspondence between b and j discussed above is being em- 
ployed. Since the coefficient (,Jl/"171 al,jzF2~2 az [jFTa) in Eq. (44) always occurs 
as product with its complex conjugate, we now require 

(jlFlal,j2F2azljFab)>O and real. (48) 

Equation (48) implies that the coefficient (jlFlal,j2F2a 2 [jFab) is calculated as 
the positive and real square root of Eq. (47) employing the values of jl ,  J2, J, and 
al, a2, a as specified by the basis relations. Consequently, Eq. (47) may now be 
rewritten as 

(]1/`1 al ,J2 F2 a2 IJ F a b) 

= +[~2(,jl/`171al,j2F272a2[jFTa) (,jiF171al,j2FaTza2]jFTa)*]~ (49) 

where the summation is over all components 71 and 72 of the irreducible represen- 
tations F t and F:. The convention of Eq. (48) now definitely settles the relation 
between the phases of the coupling coefficients (F171 F2 ?zlF? b) and (Jl/"17t al, 
j2F2?2azljFTa). Consequently, the lemma of Racah [cf. Eq. (44)] now assumes 
the simple form 

(/'1 71 F2 721/'7 b) = (,Ja /'1 71 al ,J2 ['2 72 a2 IJ F? a)/ (]1 1"1 al,j2 F2a2 IjFa b). (50) 

In this form the lemma is extremely useful since it may be directly applied to the 
calculation of the coupling coefficients (F171 F2 72 IF?b) from quantities already 
known. The derived relations are of general applicability to any point group 
GQ SU(2), R36.  

s If, in Eq. (44), a single j value is not sufficient for a specification of the label b, the additional 
index a may be introduced. The equations following Eq. (44) then remain valid except that b should be 
replaced everywhere by j, a. In actual practice, this requirement does not arise. Alternately, the index 
a alone may be employed to differentiate the functions tFyb). However, this is of no advantage com- 
pared to the correspondence between b and j. 

6 An extension to the subgroups of the rotation-reflection groups, i.e. the direct product groups 
of SU(2) or R 3 and the reflection group consisting of the unit E and the inversion I, is easily possible. 
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6. Symmetry Coupling Coefficients for the Point Group I~3. 
An Example 

To illustrate in detail the method outlined in this paper, we give below a com- 
plete list of symmetry c0upling coefficients for the point group D~ and all relevant 
information. 

The symmetry coupling coefficients have been calculated on the basis of Eq. 
(50). First of all, the basis functions of Table 1 ("basis relations") are specified. The 
expansion coefficients involved and the corresponding Wigner coefficients are 
inserted into Eq. (38) and the indicated summations over ml, m2, and m are per- 
formed. The resulting quantity is the numerator in Eq. (50), whereas the denomina- 
tor is obtained from Eq. (49) where again Eq. (38) has been used. 

The point group D~ has been chosen, since two complex representations arise 
in this case, and thus a definition of symmetric V coefficients (or alike 3-F symbols) 
is not possible in the usual way [20]. The resulting coefficients possess the sym- 

Table 1. Basis relations for the group O~ a Table 2. Symmetry coupling coefficients for D* 

Irreducible Ijr?> F, Ijm> ( j m l j r ? a >  i j k I m n <r~?fk?~l&?.> 
representation s .1 

11 
A2 

E1 

E1 

Et/2 

E3/2 

IO r'~ 1> 
II r~. i> 
+i r+ t> 
I1 F~ - i>  
12 F3 1> 
12 I'3 - l>  
½v6 l> 
½ r6 - l>  

~r+ I> 

10 o> 
I1 o> 
It t> 
It - l> 
12 -2>]~ 
12 2>j 
1½ ½> 
{+ -21> 

1 
T/~ Fj ~ 2+>-~l + -+>J 

~22 I-I+ }>+i1~- -+>] 

a The symmetry transformations provide positive 
rotations of the physical system. 
b This set of functions is required alone for 
calculation of <F 3 + 1 F 3 +1- 1 I F3 T 1 ).  

2 1 2 1 1 1 - 1  
2 1 3 1 3 1 - 1  
2 1 3 - 1  3 - 1  1 
2 1 6 1 6 1 - 1  
2 1 6 - 1  6 - 1  1 
2 1 4 1 5 1 - 1  
2 1 5 1 4 1 - 1  
3 1 3 1 3 - 1  1 
3 1 3 - 1 1 1 1/If2 
3 1 3 - I  2 1 l /V2  
3 - 1  3 - 1  3 1 1 
3 1 6 1 4 1 1/~_2 
3 1 6 1 5 1 1 / ~  
3 1 6 - 1  6 1 1 
3 - 1  6 1 6 - 1  - 1  
3 - 1 6 - 1 4 1 -i/]~__ 
3 - 1  6 - 1  5 1 i / ~  
3 1 4 t 6 - 1  i 
3 - 1  4 1 6 1 1 
3 1 5 1 6 - 1  - i  
3 - 1  5 1 6 1 1 
6 1 6 1 3 1 1 
6 1 6 - 1 1 1 1~If2 
6 1 6 - 1 2 1 1/]/2 
6 - 1  6 - 1  3 - 1  1 
6 1 4 1 3 - 1  i 
6 - 1  4 1 3 1 - 1  
6 1 5 1 3 - 1  - i  
6 - 1  5 1 3 1 - 1  
4 1 4 1 2 1 i 
4 1 5 1 1 1 - i  
5 1 5 1 2 1 - i  
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metry property 

(['l ~'1 r2 72]F7) = ( - 1) jl ~-J2 -J(F 2 72 FI 71 ]rT) (51) 

which follows from Eq. (38) and Eq. (50) in conjunction with the properties of 
vector coupling coefficients. Table 2 lists all the non-zero symmetry coupling co- 
efficients of the group D~ except those following from Eq. (51). To calculate the 
coefficient ( [ ' 3  ± 1 1"3 ± 1 [/"3 + 1 ) = 1 additional basis functions having j = 2 have 
to be introduced. In this special case, the phase factor in Eq. (51) disappears 
0"i = J 2  = 1,j = 2). 

7. General Discussion and Comparison With Previous Authors 

On the basis of the methods outlined above, the present authors have calculat- 
ed symmetry coupling coefficients for all relevant molecular point groups, single 
as well as double groups. A complete listing of these coupling coefficients will be 
given elsewhere. The program which has been written for this purpose has 
now been in use for several years as part of a general program for molecular com- 
putations. This fact guarrantees, contrary to previous choices of phase, the full 
applicability of the present standardization and the absence of any difficulties in 
actual computations. 

At first sight it might seem less advantageous that the present phase choice 
yields, in part, signs of coupling coefficients which are different from those used 
in the past. This consequence is unavoidable, however, and is more than compen- 
sated by the uninhibited applicability of the present method. It seems to be a 
propos, in this context, to briefly review the phase conventions of previous authors. 

In the classic work by Tanabe and Sugano [-6] and Griffith [73, the assumption 

(/"1 71 F2 V2 I rT> = ( r2  72 r t  71 I r T )  (52) 

has been used for F1 ¢ F2. It should be noted that Eq. (52) is not consistent with 
the symmetry requirements for most coupling coefficients introduced thereafter 
and it is neither consistent with the present phase standardization. The V coeffi- 
cients of Griffith [8] are related to the symmetry coupling coefficients of Eq. (6) by 

V( F1 F2 F)=(dr)-l/Z(Fl?lF2,2,F7) (53) 
\ 71 72 

where d r is the dimension of irreducible representation F. Since the V coefficients 
are, at most, changed in sign by any permutation of their columns, the phases of a 
set of related V coefficients are well defined. However, for each different trio of 
F1, F2, and F, a free phase factor still arises. These remaining phases have been 
fixed arbitrarily. Difficulties arise if complex representations of single groups are 
considered, and Eq. (53) is definitely not applicable to double groups. The relation 
to the phase choice, for the octahedral group, of Tanabe and Sugano [-6] and 
Griffith [7] has been given (viz. Appendix A of [8]). Although Golding/1 lJ has 
never specified his phase choice explicitly, from the example cited it may be de- 
monstrated that he implicitly assumes C(jlj2j3 F t Fz)>__ 07. This coefficient corre- 

7 In Ref, [1 lJ, the coefficient COIj2j 3 F 1 f2) has been incorrectly assumed as independent of / ' .  
Note the substitution of F for F 3 in [11]. 
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sponds, in fact, to the quantity (]1 I'l al,j2 F2 a2 [jFa b) which we introduced in Eq. 
(44) above. It follows that our phase choice is in agreement with that of Golding. 
However, this is of no consequence, since the latter author has considered the 
group O* exclusively. In the recently suggested 3-F symbols [12], there is again 
an independent choice of phase for each ordered trio of F 1, F 2, and F. The indeter- 
minacy of phase is circumvented by application of the Wigner-Eckart theorem 
where the reduced matrix element is arbitrarily defined as real and positive. This 
definition, although equivalent to Eq. (48) above, is again of no consequence. It 
requires, in fact, the choice of real basis functions as well as real 3-1 symbols which 
should not be confused with the 3-j symbols of Wigner. These conventions are 
dictated by the requirements of the angular overlap model [-18, 19] to which the 
application is then essentially limited. The symmetry coupling coefficients listed 
by Koster et al. [-9] have been calculated on the basis of Eq. (22). As stated above, 
a common phase factor occurs in this case for each ordered trio of F1,/'2, F, and 
for each b. This phase has been arbitrarily fixed, although the way in which this 
was done, has not been stated. 

It is evident that a unique standardization of phase is required. Compared to 
previous conventions, the present standardization has the definite advantage of 
being generally applicable to any point group G, single or double group. In addi- 
tion, the lemma of Racah may now be employed, in conjunction with the basis 
relations and the phase convention for Wigner coefficients, to calculate symmetry 
coupling coefficients from the known coefficients in the {j, F} scheme. It will be 
shown in a separate study [20] that a definition of symmetrized 3-F symbols may 
be proposed as a consequence. 

The standardization of the general phase factor is of utmost importance if 
completely computarized methods [-16] are used for the calculation of molecular 
properties within a given point group G. In this case, all symmetry based quantities 
must be chosen in identically the same form each time they occur, rather than in 
an equivalent form. 

The methods outlined above will be particularly useful in conjunction with the 
generalized Wigner-Eckart theorem [16]. This relation is being employed to ra- 
tionalize the results of various physical measurements by extracting suitable sets 
of semi-empirical parameters from the experimental data. Well-known areas of 
application are, e.g., to susceptibilities and effective moments in magnetism, g 
values and HFS splitting constants in electron paramagnetic resonance, energies 
and probabilities of transition in optical and ultraviolet spectroscopy, as well as 
quadrupole splittings in the M6ssbauer effect. 

Acknowledgements. The authors appreciate financial support by the Deutsche Forschnngsge- 
meinschaft, the Stiftung Volkswagenwerk, and the Fonds der Chemischen Industrie. 

Note Added in Proof. After submission of this manuscript, the method of phase standardization 
proposed here (viz. Eq. (48)) has been employed in the special case of the double groups O* and I* by 
two independent authors (cf. S. E. Harnung, Mol. Phys. 26, 473 (1973) and R. M. Golding, Mol. Phys. 
26, 661 (1973)). In addition, the same correspondence for the Kronecker multiplicity index b as that 
discussed in Sect. 5 above has been implicitly used. In distinction to these authors, the present formula- 
tion is of general applicability to any molecular point group and provides, at the same time, a con- 
venient scheme for computation of the required coupling coefficients. 
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